Abstract

A two-phase anaerobic process to produce hydrogen and methane from potatoes was investigated. In the first phase, hydrogen was produced using heat-shocked sludge. About 12 h lag-phase vanished, hydrogen yield increased from 200.4 ml/g-TVS to 217.5 ml/g-TVS and the maximum specific hydrogen production rate also increased from 703.4 ml/g-VSS d to 800.5 ml/g-VSS d when improved substrate was used, in which Cl − was substituted for SO 4 2 - . Better performances of 271.2 ml-H 2/g-TVS and 944.7 ml-H 2/g-VSS d were achieved when potatoes were pretreated by α amylase and glucoamylase. In the second phase, methane was produced from the residual of the first phase using methanogens. The maximum additional methane yield was 157.9 ml/g-TVS and the maximum specific methane production rate was 102.7 ml/g-VSS d. The results showed that the energy efficiency increased from about 20% (hydrogen production process) to about 60%, which indicated the energy efficiency can be improved by combined hydrogen and methane production process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.