Abstract

The urgent need for eco-friendly and cost-effective cellulose paper substrates in thermal management for biomedical electronic devices has driven the exploration of agro-waste materials. In this study, jackfruit peduncle waste was utilized as a precursor to produce a hybrid of AgNPs-tempo-mediated oxidation cellulose strands (AgNPs-TOCS) through acid hydrolysis, TEMPO oxidation, and an in-situ generation process. The resulting hybrid AgNPs-TOCS composite exhibited a cylindrical cellulose structure with a diameter of 27.3 μm, on which spherical AgNPs with a diameter of 16.3 nm were embedded. This hybrid AgNPs-TOCS displayed an impressive inhibition zone diameter against E. coli bacteria (15.2 nm) and exhibited excellent thermal stability up to 269 °C. Furthermore, the AgNPs-TOCS composite paper substrate was fabricated using non-solvent techniques, and its mechanical, thermal, and electrical properties were investigated. This composite paper substrate exhibits good tensile strength (65 ± 2 MPa), in-plane thermal conductivity (5.8 ± 0.2 W/(m·K)), and electrical resistivity (0.0575 KΩ·m). These findings strongly suggest that this type of composite paper substrate holds promise for applications in thermal management within the field of biomedical electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.