Abstract
Humans express several orthologs of yeast Atg8, in the LC3 and GABARAP families, which play crucial roles in autophagy through their covalent ligation to lipids, typically phosphatidylethanolamine (PE), in a process known as lipidation. Lipidation of LC3 and GABARAP regulates numerous facets of the autophagy process, including regulating expansion of the phagophore membrane, recruiting selected cargoes for degradation, and providing an autophagosome membrane-bound platform mediating dynamic interactions with other regulatory proteins. LC3 and GABARAP are families of related ubiquitin-like proteins (UBLs) (referred to here collectively as LC3/GABARAP), and their lipidation involves a divergent UBL conjugation cascade including ATG7, ATG3, and ATG12~ATG5-ATG16L1 acting as E1, E2, and E3 enzymes, respectively. ATG7 initiates LC3/GABARAP conjugation by catalyzing their C-terminal adenylation and conjugation to the catalytic cysteine of ATG3. Ultimately, the ATG12~ATG5-ATG16L1 complex catalyzes LC3/GABARAP ligation to a primary amino group on PE or other acceptor lipids. This chapter describes methods for expressing and purifying human LC3 or GABARAP, ATG7, ATG3, and the ATG12~ATG5-ATG16L1 complex for in vitro studies of LC3/GABARAP lipidation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.