Abstract

Lentiviral vectors have broad target cell tropism and efficient machinery to integrate transgenes into the host genome. Modification of these vectors by incorporating heterologous proteins into virions has relied mostly on the fusion of proteins into the HIV-1 accessory protein Vpr. Vpr expression can be harmful for cells and its gene has been deleted from third-generation vector production plasmids. We therefore developed a direct integrase fusion protein strategy as an alternative way to package heterologous proteins into vectors. The method was tested by creating two different integrase fusion proteins, IN-p53 and IN-mCherry, cloned into the 3' end of pol in the packaging plasmid. Lentiviral vectors were produced by conventional methods, using the modified packaging plasmids. Vector-incorporated fusion proteins were correctly processed from Gag-Pol, retained the ability to catalyze transgene integration, and showed fusion protein-specific activity by being fluorescent or inducing apoptosis. Functional third-generation lentiviral vectors containing IN-fusion proteins can thus be produced by standard production protocols independent of Vpr expression. Our results suggest that this packaging method is useful for lentiviral vector-mediated protein transduction, such as intranuclear meganuclease, transposon, or zinc finger protein delivery, intracellular imaging of vector particles, and generation of modified lentiviral vectors that contain both toxic and nontoxic IN-fusion proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call