Abstract

The degree of sialylation of therapeutic glycoproteins affects its circulatory half-life and efficacy because incompletely sialylated glycoproteins are cleared from circulation by asialoglycoprotein receptors present in the liver cells. Mammalian expression systems, often employed in the production of these glycoprotein drugs, produce heterogeneously sialylated products. Here, we describe how to produce highly sialylated glycoproteins using a Chinese hamster ovary (CHO) cell glycosylation mutant called CHO-gmt4 with human erythropoietin (EPO) as a model glycoprotein. The protocol describes how to isolate and characterize the CHO glycosylation mutants and how to assess the sialylation of the recombinant protein using isoelectric focusing (IEF). It further describes how to inactivate the dihydrofolate reductase (DHFR) gene in these cells using zinc finger nuclease (ZFN) technology to enable gene amplification and the generation of stable cell lines producing highly sialylated EPO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.