Abstract
ABSTRACTSSingle-walled carbon nanotubes (SWNTs) have attracted much attention due to their unique structural, mechanical, chemical, and electrical properties. Catalytic chemical vapor deposition (CCVD) through decomposition of hydrocarbons is one of the most challenging synthesis methods to produce SWNTs in large scale. In this paper, high quality SWNTs prepared in a nano-agglomerated fluidized bed reactor (NAFBR) was reported. The reactor is a vertical quartz tube with the inner diameter of about 50 mm. Catalysts nanoparticles used for the production of SWNTs were prepared with Fe metal nanoparticles carried on the surface of MgO. About 150g catalysts powders were loaded on the gas distribution grid. The reaction temperature was controlled at not less than 1123 K. The carrier gas of argon was used to maintain turbulent fluidization of the catalysts powders in FBR. The hydrogen gas was used to reduce the catalysts and to synergize the growth of SWNTs with methane. The powder products were spherical agglomerates of SWNTs bundles tangling with the catalysts particles. By optimizing the process parameters of CCVD, the products of SWNTs with the diameter about 0.9 ∼ 1.8 nm were prepared, without any multi-walled carbon nanotubes (MWNTs) or amorphous carbon. The microstructure of SWNTs products were characterized by the methods of high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Raman spectra, etc. The NAFBR is a commercially viable (effective and continuous production at a low cost) process for the production of SWNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: MRS Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.