Abstract

Lupus-prone, anti-DNA, heavy (H) chain "knock-in" mice were obtained by backcrossing C57BL/6 mice, targeted with a rearranged H chain from a VH11(S107)-encoded anti-DNA hybridoma (D42), onto the autoimmune genetic background of New Zealand Black/New Zealand White (NZB/NZW) F1 mice. The targeted female mice developed typical lupus serologic manifestations, with the appearance of transgenic IgM anti-DNA autoantibodies at a young age (2-3 mo) and high affinity, somatically mutated IgM and IgG anti-DNA Abs at a later age (6-7 mo). However, they did not develop clinical, lupus-associated glomerulonephritis and survived to at least 18 mo of age. L chain analysis of transgenic anti-DNA Abs derived from diseased NZB/NZW mouse hybridomas showed a very restricted repertoire of Vkappa utilization, different from that of nonautoimmune (C57BL/6 x BALB/c)F1 transgenic anti-DNA Abs. Strikingly, a single L chain was repetitively selected by most anti-DNA, transgenic NZB/NZW B cells to pair with the targeted H chain. This L chain had the same Vkappa-Jkappa rearrangement as that expressed by the original anti-DNA D42 hybridoma. These findings indicate that the kinetics of the autoimmune serologic manifestations are similar in wild-type and transgenic lupus-prone NZB/NZW F1 mice and suggest that the breakdown of immunologic tolerance in these mice is associated with the preferential expansion and activation of B cell clones expressing high affinity anti-DNA H/L receptor combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call