Abstract
In a study screening anaerobic microbes utilizing D: -galactitol as a fermentable carbon source, four bacterial strains were isolated from an enrichment culture producing H₂, ethanol, butanol, acetic acid, butyric acid, and hexanoic acid. Among these isolates, strain BS-1 produced hexanoic acid as a major metabolic product of anaerobic fermentation with D: -galactitol. Strain BS-1 belonged to the genus Clostridium based on phylogenetic analysis using 16S rRNA gene sequences, and the most closely related strain was Clostridium sporosphaeroides DSM 1294(T), with 94.4% 16S rRNA gene similarity. In batch cultures, Clostridium sp. BS-1 produced 550 ± 31 mL L⁻¹ of H₂, 0.36 ± 0.01 g L⁻¹ of acetic acid, 0.44 ± 0.01 g L⁻¹ of butyric acid, and 0.98 ± 0.03 g L⁻¹ of hexanoic acid in a 4-day cultivation. The production of hexanoic acid increased to 1.22 and 1.73 g L⁻¹ with the addition of 1.5 g L⁻¹ of sodium acetate and 100 mM 2-(N-morpholino)ethanesulfonic acid (MES), respectively. Especially when 1.5 g L⁻¹ of sodium acetate and 100 mM MES were added simultaneously, the production of hexanoic acid increased up to 2.99 g L⁻¹. Without adding sodium acetate, 2.75 g L⁻¹ of hexanoic acid production from D-galactitol was achieved using a coculture of Clostridium sp. BS-1 and one of the isolates, Clostridium sp. BS-7, in the presence of 100 mM MES. In addition, volatile fatty acid (VFA) production by Clostridium sp. BS-1 from D-galactitol and D: -glucose was enhanced when a more reduced culture redox potential (CRP) was applied via addition of Na₂S·9H₂O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.