Abstract
In this study, we successfully performed Agrobacterium-mediated genetic transformation of Salvia miltiorrhiza and produced herbicide-resistant transformants. Leaf discs of S. miltiorrhiza were infected with Agrobacterium tumefaciens EHA105 harboring pCAMBIA 3301. The pCAMBIA 3301 includes an intron-containing gus reporter and a bar selection marker. To increase stable transformation efficiency, a two-step selection was employed which consists of herbicide resistance and gus expression. Here, we put more attention to the screening step of herbicide resistance. The current study provides an efficient screening system for the transformed plant of S. miltiorrhiza harboring bar gene. To determine the most suitable phosphinothricin concentration for plant selection, non-transformed leaf discs were grown on selection media containing six different phosphinothricin concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0mg/l). Based on the above results of non-transformed calluses, the sensitivity of phosphinothricin (0, 0.4, 0.8, 1.2, 1.6mg/l) was tested in the screening of transgenic S. miltiorrhiza. We identified that 0.6mg/l phosphinothricin should be suitable for selecting putatively transformed callus because non-transformed callus growth was effectively inhibited under this concentrations. When sprayed with Basta, the transgenic S. miltiorrhiza plants were tolerant to the herbicide. Hence, we report successful transformation of the bar gene conferring herbicide resistance to S. miltiorrhiza.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.