Abstract

The formic acid (CH2O2) decomposition over sulfated zirconia (SZ) catalysts prepared under different synthesis conditions, such as calcination temperature (500–650 °C) and sulfate loading (0–20 wt.%), was investigated. Three sulfate species (tridentate, bridging bidentate, and pyrosulfate) on the SZ catalysts were characterized by using temperature-programmed decomposition (TPDE), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The acidic properties of the SZ catalysts were investigated by the temperature-programmed desorption of iso-propanol (IPA-TPD) and pyridine-adsorbed infrared (Py-IR) spectroscopy and correlated with their catalytic properties in formic acid decomposition. The relative contributions of Brønsted and Lewis acid sites to the formic acid dehydration were compared, and optimal synthetic conditions, such as calcination temperature and sulfate loading, were proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call