Abstract

Lignins are generally used as a low-grade fuel in the pulp and paper industry. In this work, pyrolysis of Alcell and Kraft lignins obtained from Alcell process and Westvaco, respectively, was carried out in a fixed-bed reactor to produce hydrogen and gas with medium heating value. The effects of carrier gas (helium) flow rate (13.4–33 ml/min/g of lignin), heating rate (5–15°C/min) and temperature (350–800°C) on the lignin conversion, product composition, and gas yield have been studied. The gaseous products mainly consisted of H 2, CO, CO 2, CH 4 and C 2+. The carrier gas flow rate did not have any significant effect on the conversion. However, at 800°C and at a constant heating rate of 15°C/min with increase in carrier gas flow rate from 13.4 to 33 ml/min/g of lignin, the volume of product gas decreased from 820 to 736 ml/g for Kraft and from 820 to 762 ml/g for Alcell lignin and the production of hydrogen increased from 43 to 66 mol% for Kraft lignin and from 31 to 46 mol% for Alcell lignin. At a lower carrier gas flow rate of 13.4 ml/min/g of lignin, the gas had a maximum heating value of 437 Btu/scf. At this flow rate and at 800°C, with increase in heating rate from 5 to 15°C/min both lignin conversion and hydrogen production increased from 56 to 65 wt.% and 24 to 31 mol%, respectively, for Alcell lignin. With decrease in temperature from 800°C to 350°C, the conversion of Alcell and Kraft lignins were decreased from 65 to 28 wt.% and from 57 to 25 wt.%, respectively. Also, with decrease in temperature, production of hydrogen was decreased. Maximum heating value of gas (491 Btu/scf) was obtained at 450°C for Alcell lignin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.