Abstract

In this work, the production of light diesel like fractions by thermal catalytic cracking of crude palm oil (Elaeis guineensis, Jacq.) has been systematically investigated in pilot scale. The cracking reactions were carried out in a reactor of 143L, operating in batch mode at 450°C and atmospheric pressure, using 20% (w/w) sodium carbonate (Na2CO3) as catalyst. The reaction products called organic liquid products (OLP) were submitted to distillation using a laboratory scale column (Vigreux Column) of three stages in order to obtain light diesel like fractions. The catalyst has been characterized by X-ray diffraction, FTIR spectroscopy, TGA and DTG. The OLP and the green diesel fractions have been physical–chemical characterized by officials AOCS, ASTM, and ABNT/NBR methods in terms of acid value, saponification value, density, refraction index, kinematics viscosity, copper strip corrosion, carbon residue, flash point, and distillation curve. The chemical composition of green diesel has been determined by FTIR spectroscopy and GC–MS. The results show that the process yield on OLP was 65.86% (w/w) with an acid value of 1.02mg KOH/g OLP and kinematic viscosity of 1.48mm2/s, 30.24% (w/w) non-condensable gases, 2.5% (w/w) water, and 1.4% (w/w) coke. The yield on green diesel obtained by distillation average 24.9% (w/w), presenting an acid value of 1.68mg KOH/g green diesel and kinematic viscosity of 1.48mm2/s. The GC–MS analysis indicated that green diesel is composed of 91.38% (w/w) of hydrocarbons (31.27% normal paraffins, 54.44% olefins and 5.67% of naphthenics), and 8.62% (w/w) of oxygenates compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.