Abstract

The majority of the waste produced by the food and agriculture industries is abundant in proteins, carbohydrates, and fats, which can be utilized effectively in other food products or industrial products. Especially, washed rice water (WRW) contains a significant quantity of starch that has been discarded without being utilized properly. In the present investigation, we have successfully upgraded washed rice water into the industrially important intermediate, i.e., gluconic acid, using an Au/MgO catalyst in a single pot reaction. The upgrading strategy was developed in three consecutive phases using two different model reactions: (1) glucose to gluconic acid, (2) hydrolysis of starch into glucose, followed by the oxidation reaction. The results showed that almost 60% gluconic acid was achieved at room temperature with atmospheric pressure. The present investigation highlighted that hydrolysis, followed by oxidation reaction is the most promising route for upgrading WRW to gluconic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.