Abstract

In germ cell transplantation experiments, the use of sterile recipients that do not produce their own gametes is an important prerequisite. Triploidization and dnd gene knockdown (KD) methods have been widely used to produce sterile fish. However, triploidization does not produce complete sterility in some fish species, and gene KD is labor and time intensive since it requires microinjection into individual fertilized eggs. To overcome these problems, in this study, we generated homozygous mutants of the dead end (dnd) gene in rainbow trout (Oncorhynchus mykiss) using the clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system, analyzed their reproductive capacity, and evaluated their suitability as recipients for germ cell transplantation. By crossing F1 heterozygous mutants produced from founders subjected to genome editing, an F2 generation consisting of approximately 1/4 homozygous knockout mutants (dnd KO) was obtained. The dnd KO hatchlings retained the same number of primordial germ cells (PGCs) as the wild-type (WT) individuals, after which the number gradually decreased. At 1year of age, germ cells were completely absent in all analyzed individuals. To evaluate the dnd KO individuals as recipients for germ cell transplantation, germ cells prepared from donor individuals were transplanted into the abdominal cavity of dnd KO hatchlings. These cells migrated to the recipient gonads, where they initiated gametogenesis. The mature recipient individuals produced only donor-derived sperm and eggs in equivalent numbers to WT rainbow trout. These results indicate that dnd KO rainbow trout are suitable recipient candidates possessing a high capacity to nurse donor-derived germ cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.