Abstract

Galα1-3Gal (α-Gal epitope) is the major xenoantigenic epitope responsible for hyperacute rejection upon pig-to-human xenotransplantation. Endo-β-galactosidase C (EndoGalC) from Clostridium perfringens can digest the α-Gal epitope. In this study, gene-engineered primary cultured porcine embryonic fibroblasts (PEF) expressing EndoGalC were obtained and subjected to somatic cell nuclear transfer (SCNT) to test whether xenograft-competent pigs can be created. The EndoGalC-expressing PEF clones exhibited highly reduced expression of α-Gal epitope, as revealed by cytochemical staining with BS-I-B(4) isolectin, a lectin that specifically binds to α-Gal epitope, and FACS analysis. The pattern of low level of α-Gal epitope expression continued for at least 6 months (more than 10 generations) after isolation. SCNT of nuclei from these cells resulted in the generation of blastocysts that displayed nearly complete loss of α-Gal epitope from their cell surface. This is the first study to demonstrate that SCNT using EndoGalC-expressing PEFs as donors would be useful for production of genetically modified cloned pigs suitable for xenotransplantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.