Abstract

Islet xenotransplantation is a promising treatment for type I diabetes. Numerous studies of islet xenotransplantation have used pig-to-nonhuman primate transplantation models. Some studies reported long-term survival and successful function of porcine islets in diabetic monkeys. Genetic engineering techniques may improve the survival and function of porcine islets. A recent study reported the generation of transgenic pigs expressing human insulin rather than porcine insulin by changing one amino acid at the end of the β-chain in insulin. However, C-peptide from pigs still existed. In this study, we generated transgenic pigs expressing human proinsulin to express human insulin and C-peptide using fibroblasts from proinsulin knockout pigs as donor cells for somatic cell nuclear transfer. Eleven live piglets were delivered from three surrogates and characterized to confirm the genotype and phenotype of the generated piglets. Genotype analysis of the generated piglets showed that five of the eleven piglets contained the human proinsulin gene. Insulin expression was confirmed in the serum and pancreas in two of the five piglets. C-peptide derived from human proinsulin was also confirmed by liquid chromatography tandem mass spectrometry. Non-fasting blood glucose level was measured to verify the function of the insulin derived from the human proinsulin. Two piglets expressing insulin showed normal glucose levels similar to that in the wild-type control. In conclusion, human insulin- and C-peptide-expressing pigs without porcine insulin and C-peptide were successfully established. These pigs can be used as a source of islets for islet xenotransplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call