Abstract

The production of furfural from the C5 monosaccharides xylose, arabinose and ribose, as well as from real biomass (corn fiber), was studied using H-Beta zeolite as catalyst in a monophasic system with the biomass-derived solvent, gamma-valerolactone. Due to the combination of Bronsted and Lewis acid sites on this catalyst (Bronsted:Lewis ratio = 1.66), H-Beta acts as a bifunctional catalyst, being able to isomerize (Lewis acid) and dehydrate (Bronsted acid) monosaccharides. The combination of Lewis and Bronsted acid functionality of H-Beta was shown to be effective for the isomerization of xylose and arabinose, followed by dehydration. While no advantages were found in the conversion of xylose, higher furfural yields were achieved from arabinose, using H-Beta, 73 %, compared to sulfuric acid (44 %) and Mordenite (49 %). The furfural yields from corn fiber for H-Beta, H-Mordenite and sulfuric acid were 62, 44, and 55 %, respectively, showing that H-Beta is particularly effective for conversion of this biomass feedstock composed of 45 wt% hemicellulose, of which 66 % is xylose and 33 % arabinose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call