Abstract

During irradiation at elevated temperatures, vacancy and interstitial defects that escape can produce several different types of microstructural changes. Hence the production rate of freely-migrating defects must be known as a function of irradiating particle species and energy before quantitative correlations can be made between microstructural changes. Our fundamental knowledge of freely-migrating defect production has increased substantially in recent years. Critical experimental findings that led to the improved understanding are reviewed in this paper. A strong similarity is found for the dependence of freely-migrating defect production on primary recoil energy as measured in a variety of metals and alloys by different authors. The efficiency for producing freely-migrating defects decreases much more strongly with increasing primary recoil energy than does the efficiency for creating stable defects at liquid helium temperatures. The stronger decrease can be understood in terms of additional intracascade recombination that results from the nonrandom distribution of defects existing in the primary damage state for high primary recoil energies. Although the existing data base is limited to fcc materials, the strong similarity in the reported investigations suggests that the same dependence of freely-migrating defect production on primary recoil energy may be characteristic of a wide variety of other alloy systems as well. 52 refs., 4 figs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.