Abstract

Frameshift mutations have been produced in specific repair-negative Salmonella tester strains by photoaffinity labeling technique using ethidium azide. Reversions requiring a +1 addition or a −2 deletion were especially sensitive. Mutagenesis was reduced by the simultaneous addition of non-mutagenic ethidium bromide, and was prevented by photolysis of the azide prior to culture addition. Identical tester strains active in DNA excision repair were not mutagenized by the azide. These results are consistent with the interpretation that photolysis of the bound ethidium analog converts the drug from its noncovalent mode of binding (presumably intercalation) to a covalent complex with consequent production of frameshift mutations. Such photoaffinity labeling by drugs which bind to DNA not only confirms the importance of covalent drug attachment for frameshift mutagenesis, but also provides powerful techniques for studying the molecular details of a variety of genetic mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.