Abstract

The production of ethanol from starch was studied in a fluidized-bed reactor (FBR) using co-immobilized Zymomonas mobilis and glucoamylase. The FBR was a glass column of 2.54 cm in diameter and 120 cm in length. The Z. mobilis and glucoamylase were co-immobilized within small uniform beads (1.2-2.5 mm diameter) of kappa-carrageenan. The substrate for ethanol production was a soluble starch. Light steep water was used as the complex nutrient source. The experiments were performed at 35 degrees C and pH range of 4.0-5.5. The substrate concentrations ranged from 40 to 185 g/L, and the feed rates from 10 to 37 mL/min. Under relaxed sterility conditions, the FBR was successfully operated for a period of 22 d, during which no contamination or structural failure of the biocatalyst beads was observed. Volumetric productivity as high as 38 g ethanol/(Lh), which was 74% of the maximum expected value, was obtained. Typical ethanol volumetric productivity was in the range of 15-20 g/(Lh). The average yield was 0.49 g ethanol/g substrate consumed, which was 90% of the theoretical yield. Very low levels of glucose were observed in the reactor, indicating that starch hydrolysis was the rate-limiting step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.