Abstract
Residual plant biomass collected from agricultural, technical or biopharmaceutical processes contains odorous substances. The latter are often unacceptable for customers if the biomass is used in sustainable products such as building materials, paints, glues or flame-resistant foils. The objective of this study was to identify enzymes that can prevent the formation or facilitate the degradation of odorous substances such as butanol, eugenol or ethyl acetate and their derivatives in residual biomass. We used plant cell packs (PCPs) as a small-scale screening platform to assess the expression of enzymes that break down odorous substances in tobacco biomass. First, we compiled a list of volatile compounds in residual plant biomass that may give rise to undesirable odors, refining the list to 10 diverse compounds representing a range of odors. We then selected five monomeric enzymes (a eugenol oxidase, laccase, oxidase, alkane mono-oxidase and ethyl acetate hydrolase) with the potential to degrade these substances. We transiently expressed the proteins in PCPs, targeting different subcellular compartments to identify optimal production conditions. The maximum yield we achieved was ∼20 mg kg−1 for Trametes hirsute laccase targeted to the chloroplast. Our results confirm that enzymes for the removal of odorous substances can be produced in plant systems, facilitating the upcycling of residual biomass as an ingredient for sustainable products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.