Abstract
Protein isolate from pumpkin oil cake (PuOC PI) was hydrolysed by alcalase, flavourzyme and by sequential use of these enzymes, respectively, and the antioxidant properties and angiotensin-I converting enzyme (ACE) inhibitory activities of hydrolysates were evaluated. Under the same reaction conditions, alcalase hydrolysates showed a higher degree of hydrolysis (DH) than did flavourzyme hydrolysates. The highest DH’s by individual enzymes were 53.23 ± 0.7% and 37.17 ± 1.05%, respectively, both at 60 min. The increase of radical scavenging activity (RSA) in hydrolysates was positively correlated with the increase of DH, for both enzymes, though hydrolysates with flavourzyme showed two- or three-fold lower RSA than with alcalase. The highest bioactive potential was determined in the alcalase hydrolysate at 60 min, with RSA being 7.59 ± 0.081 mM TEAC/mg and ACE-inhibitory activity 71.05 ± 7.5% (IC 50 = 0.422 mg/ml). When this hydrolysate was further hydrolysed by flavourzyme, DH increased up to 69.29 ± 0.9%, but lower RSA (4.82 ± 0.21 mM TEAC/mg) and ACE-inhibitory activity (55.81 ± 6.196%) were determined in the final hydrolysate. This study suggested that the PuOC proteins could be converted into protein hydrolysates with antioxidant and ACE-inhibitory activities by enzymatic hydrolysis. Alcalase was shown as promising enzyme in further development of bioprocesses for the production of new bioactive food ingredients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.