Abstract

This study presents a new groundbreaking methodology for integrating innovative concepts to develop novel drug-delivery strategies. This methodology combines genetically engineered elastin-like recombinamers (ELRs) with supercritical fluid (SCF) techniques to encapsulate a poorly water-soluble drug in a one-step process. The chemotherapeutic agent docetaxel (DTX) is encapsulated with a block copolymer ELR containing the RGD peptide, a specific target sequence for cancer cells, using the supercritical anti-solvent (SAS) technique in a high process yield of up to 70%. SEM studies show spherical microparticles of 10μm after encapsulation. After dispersion under physiological conditions, microparticles disaggregate into stable monodisperse nanoparticles of 40nm size and −30mV ζ-potential. This protects the drug, as confirmed by NMR analysis, thereby increasing the water solubility of DTX up to fifty orders of magnitude. The delivery process is governed by the Fick diffusion mechanism and indicates that the presence of DTX on the particles surface is practically negligible. Cellular assays showed that, due to the presence of the cancer target sequence RGD, breast cancer cells were more affected than human endothelial cells, thus meaning that the strategy developed in this work opens the way to new controlled release systems more precise than non-selective chemotherapeutic drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call