Abstract
We report a cascade synthetic route to directly obtain diethyl terephthalate, a replacement for terephthalic acid, from biomass-derived muconic acid, ethanol, and ethylene. The process involves two steps: First, a substituted cyclohexene system is built through esterification and Diels-Alder reaction; then, a dehydrogenation reaction provides diethyl terephthalate. The key esterification reaction leads to improved solubility and modulates the electronic properties of muconic acid, thus promoting the Diels-Alder reaction with ethylene. With silicotungstic acid as the catalyst, nearly 100% conversion of muconic acid was achieved, and the cycloadducts were formed with more than 99.0% selectivity. The palladium-catalyzed dehydrogenation reaction preferentially occurs under neutral or mildly basic conditions. The total yield of diethyl terephthalate reached 80.6% based on the amount of muconic acid used in the two-step synthetic process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.