Abstract

Strain MR-12 which was derived from Candida cloacae M-l as a mutant unable to assimilate n-alkane showed marked increase in dicarboxylic acid (DC) productivity from n-alkane. Resting cells of strain MR-12 produced 42.7g/liter of n-tetradecane 1,14-dicarboxylic acid (DC-16) from n-hexadecane (n-C16) after 72 hr’ incubation. DC degradation activities of strain M-1 and MR-12 were found to be markedly reduced and their activities against DC-16 decreased to 40% and 10% of that of the parent strain, respectively. Strain M-1 and MR-12 produced DC from the various oxidized derivatives of n-alkane such as alcohol, diol, aldehyde, fatty acid and methyl- or ethylester of fatty acid other than n-alkane. The carbon balance in n-C16 oxidation was determined by using resting cells of strain MR-12 and about 60% of utilized carbon was recovered as DC-16 and about 40% was recovered as CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.