Abstract

In the adsorption process, the surface area, pore and particle size distribution and the chemical structure of the solid and the type of adsorbent are of vital importance. Activated carbon (AC) is a very good adsorbent material and its cost is highly dependent on the starting material and production method. The pore size and functional structure of the surface depend on the amount of activation chemical used. Hierarchical ACs were produced from lignite by loading two different amounts of KOH. The impregnation ratio (KOH/lignite) was chosen as 1/1 and 3/1 and the produced ACs were labelled as AC1 and AC3. The surface areas of AC1 and AC3 were determined as 1321.3 and 2421.3 m2/g, and the total pore volumes were 1.079 and 1.425 cm3/g. Methylene blue (MB) and p-nitrophenol (p-NP) were used to determine the adsorption performance of the produced ACs. The adsorption data were evaluated in terms of the Langmuir and Freundlich models. The amounts of MB and p-NP adsorbed on the surface were calculated in mg/g, total and accessible surface area in mg/m2. It was determined that the MB and p-NP adsorbed to the AC1 sample were higher than the AC3 sample per m2 of population. Molecular orientation is possible depending on the solid surface functionality and chemical structure of the molecule to be adsorbed. It was concluded that in addition to the large surface area, the pore width that can be entered and the functional structure of the surface are very significant factors in the adsorption processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.