Abstract

The cDNA of D-amino acid oxidase (DAO) gene isolated from Trigonopsis variabilis was expressed in Schizosaccharomyces pombe. A clone, ASP327-10, transformed with plasmid vector, pTL2M5DAO, expressed catalytically active DAO in the presence of G418, and converted Cephalosprin C to alpha-ketoadipyl-7-cephalosporanic acid (KA-7-ACA) and glutaryl-7-aminocephalosporanic acid (GL-7-ACA). Biocatalysts were prepared using ASP327-10 and T. variabilis, and evaluated to demonstrate the feasibility of recombinant S. pombe for industrial application. The cells were immobilized by crosslinking polyethylene imine after glutardialdehyde (GDA) fixation and permeabilization by alkaline treatment. Although the biocatalyst prepared from ASP327-10 exhibited DAO activity, catalase activity still remained fully even after permeabilization, under which condition, the catalase activity of T. variabilis decreased to 20-30%. Heat treatment was required before cell fixation by GDA to inactivate the catalase in S. pombe. This improved the efficiency of bioconversion to GL-7-ACA, but caused poor mechanical strength in the biocatalyst of S. pombe. To overcome this weakness, a catalase-deficient host strain was obtained by ethylmethansulfate mutagenesis. Moreover, taking economics into consideration, the integrative vector, pTL2M5DAO-8XL, with multi-copies of expression cassette was constructed to express DAO in S. pombe even in the absence of G418. The newly established integrant, ASP417-7, did not exhibit any catalase activity so that heat treatment was not required. The obtained integrant and its biocatalyst were significantly improved in GL-7ACA conversion ability and mechanical strength. This study demonstrates that the established integrant is a potential candidate as an alternative source of DAO enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call