Abstract

The production of d-allulose is usually conducted via isolated-enzyme or whole-cell biocatalysis reactions. In the present study, an innovative biocatalyst, d-psicose 3-epimerase (DPEase) from Clostridium scindens ATCC 35704, presented on the surface of Bacillus subtilis spores, was applied for d-allulose production. DPEase was fused at the C-terminus of the anchoring protein, CotZ, via a peptide linker, and trophic genes were used as selection markers during the chromosomal integration. The optimal temperature and pH of the fusion protein CotZ-DPEase were 55 °C and pH 7.5-8.0, respectively, and the anchored DPEase exhibited high thermostability. Under optimal conditions, 30 g/L of recombinant spores can produce 85 g/L d-allulose from 500 g/L d-fructose after 12 h, and 60% of the yield was maintained after five cycles of utilization. Therefore, this biocatalyst system, capable of expressing and immobilizing DPEase on the spore surface of B.subtilis, was an appropriate alternative for d-allulose production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.