Abstract

The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC) and peripheral blood mononuclear cells (PBMC) of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

Highlights

  • The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system

  • The high levels of IL-10 produced by whole blood cells may increase the susceptibility of these cells to infection with T. cruzi

  • No significant difference in the production of TNF-α was observed between peripheral blood mononuclear cells (PBMC) and whole blood cells

Read more

Summary

Introduction

The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC) and peripheral blood mononuclear cells (PBMC) of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. During the acute phase of infection, the presence of the parasite induces a rapid increase in the production, maturation, and activation of monocytes/macrophages in an attempt to control its replication[6]. In vivo, these cells secrete hydrogen peroxide and nitric oxide (NO) when in contact with the parasite[7,8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.