Abstract

A novel approach for manufacturing complex parts of ultra-high-temperature ceramics (UHTCs) is proposed, combining freeze casting with pressureless spark plasma sintering (SPS). With the aid of MoSi2 sintering additive (15 vol.% or more), this combination enables the production of fully dense ZrB2-based UHTC parts at 1900 °C. Producing complex-shaped samples including an intricate network of internal microchannels seems feasible, by using additive manufacturing techniques in the production of templates for the external silicone mould and the internal microchannel network to be used during the freeze casting process. Although defects are prone to occur either during freeze drying, due to thermal stresses arising from the expansion mismatch between the internal resin template and the ceramic preform, or during the resin burn-out or SPS cycles, the resulting samples exhibited a fully dense microstructure and similar hardness (17 ± 1GPa) as the bulk material. Thus, the proposed approach shows promise in the production of arbitrarily complex-shaped UHTC parts that may find application in numerous industrial sectors including aerospace, aviation, and energy generation and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.