Abstract
The article presents theoretical and technological foundations for the production of complex alumosilicomanganese alloy (ASM) from high-silicon manganese ore, Karaganda high-ash coals and Teniz-Korzhunkol coal basins (Borly and Saryadyr coal deposits), Tekturmas deposit quartzite and long-flame coal of Shubarkol field. Based on the reference data and calculated thermodynamic data (for compounds with unknown thermodynamic data), a mathematical model of the phase structure was constructed by conducting a thermodynamic-diagram analysis of four-component Fe – Si – Al – Mn system. The compositions of alumosilicomanganese obtained from the coals of Karaganda and Teniz-Korzhunkol coal basins, in contrast to ASM alloy from Ekibastuz coals, are shifted in the region of tetrahedra with relatively large volumes. This fact indicates their increased stability and technological predictability. The results of the series of experimental tests carried out in an ore-thermal furnace has shown the possibility of obtaining an ASM alloy with controlled chemical composition using high-ash coals of Borly and Saryadyr fields, the substandard high-silica manganese ore of Zapadny Kamys field, addition of long-flame coal from Shubarkol deposit and quartzite of Tekturmas deposit to the mix by continuous slag-free process. Chemical composition of the alloy was regulated by addition of manganese ore to the sample of charge materials. A complex alloy was obtained with the following chemical composition (% by mass): 32 – 53 % of Si; 15.5 – 25.0 % of Al; 12 – 32 % of Mn; 8 – 20 % of Fe; 0.02 – 0.05 % of P; 0.2 – 0.5 % of C. The resulting metal does not crumble into powder when stored. This is ensured by low phosphorus content and high aluminum content of more than 10 %. Phase components of the experimental alloy were determined. The use of dumping high-ash coals, substandard manganese ores and the complete elimination of coke use ensure a low cost of the alloy. It is proposed to use this alloy for deoxidation and alloying of steel, and also as a reducing agent in the production of refined ferromanganese grades.
Highlights
Based on the reference data and calculated thermodynamic data, a mathematical model of the phase structure was constructed by conducting a thermodynamic-diagram analysis of four-component Fe – Si – Al – Mn system
The results of the series of experimental tests carried out in an ore-thermal furnace has shown the possibility of obtaining an ASM alloy with controlled chemical composition using high-ash coals of Borly and Saryadyr fields, the substandard high-silica manganese ore of Zapadny Kamys field, addition of long-flame coal from Shubarkol deposit and quartzite of Tekturmas deposit to the mix by continuous slag-free process
Chemical composition of the alloy was regulated by addition of manganese ore to the sample of charge materials
Summary
Есенжулов А.Б.2, к.т.н., президент Рощин В.Е.3, д.т.н., профессор кафедры «Пирометаллургические и литейные технологии». Приведены результаты разработки теоретических и технологических основ получения комплексного кремний-алюминий-марганцевого сплава из высококремнистой марганцевой руды, высокозольных углей Карагандинского и Тениз-Коржункольского угольных бассейнов (угольных месторождений Борлы и Сарыадыр), кварцита месторождения Тектурмас и длиннопламенного угля месторождения Шубарколь. Результаты проведенных серий экспериментальных испытаний в руднотермической печи показали возможность получения сплава алюмосиликомарганец регулируемого химического состава с использованием высокозольных углей месторождений Борлы и Сарыадыр, некондиционной высококремнистой марганцевой руды месторождения Западный Камыс с добавкой в шихту длиннопламенного угля месторождения Шубарк оль и кварцита месторождения Тектурмас непрерывным бесшлаковым способом. Комплексный сплав предлагается применять для раскисления и легирования стали, а также в качестве восстановителя при получении рафинированных сортов ферромарганца. Ж. Абишева (ХМИ) разрабатываются новые виды комплексных ферросплавов, которые производятся из высокозольных углей (углистых пород) и некондиционной руды. Опытные испытания по обработке низколегированной стали с использованием ФСА были проведены в условиях металлургического завода Çolakoğlu Metallurgy Inc. No 9 стали в отличие от традиционного метода раскисления (ФС75 и вторичный алюминий АВ87)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Izvestiya Visshikh Uchebnykh Zavedenii. Chernaya Metallurgiya = Izvestiya. Ferrous Metallurgy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.