Abstract

Furnace bottom ash (FBA) is generated in significant quantities from coal fired power stations and is a problem when commercially viable reuse applications do not exist locally. Representative samples of FBA from the Kilroot power station in Northern Ireland have been milled, pressed and sintered at a range of temperatures to form new ceramic materials. The effect of adding recycled glass to the mix has been investigated. The optimum FBA ceramics were produced by sintering at 960°C and these had a density of 2.388g/cm3, zero water adsorption indicating minimal open porosity, and a Vickers hardness comparable to commercially available glass-ceramics. The addition of 20% by weight of glass reduced shrinkage during sintering, while the samples maintained high density and hardness. This glass addition allows greater dimensional control during sintering to form FBA ceramic tiles. The research demonstrates that FBA can be processed into ceramics for use in higher value products compared to conventional use as lightweight aggregate. Further research is required to optimize processing and fully characterize material properties. This novel approach to managing FBA has potential to transform a problematic waste in Northern Ireland into a valuable resource.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call