Abstract

To understand the mechanism of the dehydrogenation of methanol to CO and H2 catalyzed by a ruthenium pincer complex, a density functional theory (DFT) study has been conducted on two different cycles which differ in the substances entering the cycle (methanol (cycle 1) versus methoxymethanol (cycle 2)). Our calculated results show that both cycles consist of three stages: dehydrogenation of alcohol to aldehyde (stage I); hydrogen formation (stage II); and decarbonylation with the regeneration of the catalyst (stage III). The energy barriers of the rate-determining steps for cycles 1 and 2 are 49.6 and 28.5 kcal mol-1, respectively. Thus cycle 2 is more energetically feasible. For stage III of cycle 2, our results did not support the mechanism proposed in the experiment (CO release occurs prior to decarbonylation). Instead, we suggested and examined an alternative pathway, that is, decarbonylation occurs prior to CO release. The mechanistic insights gained in the present paper could be beneficial for further designing of these kinds of reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.