Abstract

Cryogenic buffer-gas beam sources are capable of producing intense beams of a wide variety of molecules and have a number of advantages over traditional supersonic expansion sources. In this work, we report on a neon matrix isolation study of carbon clusters produced with a cryogenic buffer-gas beam source. Carbon clusters created by laser ablation of graphite are trapped in a neon matrix and detected with a Fourier-transform infrared spectrometer in the spectral range 4000-1000 cm-1. Through a study of carbon cluster production as a function of various system parameters, we characterize the behavior of the buffer-gas beam source and find that approximately 1011-1012 of each cluster is produced with each pulse of the ablation laser. These measurements demonstrate the usefulness of cryogenic buffer-gas beam sources for producing molecular beams of clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.