Abstract

Chinese hamster ovary (CHO) cells in fed-batch cultures produce several metabolic byproducts derived from amino acid catabolism, some of which accumulate to growth inhibitory levels. Controlling the accumulation of these byproducts has been shown to significantly enhance cell proliferation. Interestingly, some of these byproducts have physiological roles that go beyond inhibition of cell proliferation. In this study, we show that, in CHO cell fed-batch cultures, branched-chain amino acid (BCAA) catabolism contributes to the formation of butyrate, a novel byproduct that is also a well-established specific productivity enhancer. We further show that other byproducts of BCAA catabolism, namely isovalerate and isobutyrate, which accumulate in CHO cell fed-batch cultures, also enhance specific productivity. Lastly, we show that the rate of production of these BCAA catabolic byproducts is negatively correlated with glucose uptake and lactate production rates. Thus, limiting glucose supply to suppress glucose uptake and lactate production, as in the case of fed-batch cultures employing high-end pH-controlled delivery of glucose (HiPDOG) technology, significantly enhances BCAA catabolic byproduct accumulation, resulting in higher specific productivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.