Abstract

Macrocystis pyrifera (Giant Kelp), a dominant macroalgal species in southern California, produced 171 ng per g fresh wt (gfwt) per day of CHBr3 and 48 ng gfwt−1 d−1 of CH2Br2 during laboratory incubations of whole blades. Comparable rates were measured during in situ incubations of intact fronds. Release of CHBr3 and CH2Br2 by M. pyrifera was affected by light and algal photosynthetic activity, suggesting that environmental factors influencing kelp physiology can affect halomethane release to the atmosphere. Data from H2O2 additions suggest that brominated methane production during darkness is limited by bromide oxidant supply. A bromine budget constructed for a region of southern California indicated that bromine emitted from the use of CH3Br as a fumigant (1 × 108 g Br yr−1) dominates macroalgal sources (3 × 106 g Br yr−1). Global projections, however, suggest that combined emissions of marine algae (including microalgae) contribute substantial amounts of bromine to the global cycle, perhaps on the same order of magnitude as anthropogenic sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.