Abstract

Classical swine fever virus (CSFV) and porcine circovirus type 2 (PCV2) have caused severe diseases in swine populations worldwide. Here, a polycistronic baculovirus vector was developed to express a bivalent vaccine, consisting of the CSFV-E2 and PCV2-Cap protein, and an immunomodulator protein derived from the Flammulina velutipes, FVE-FIP, as well as the selection marker, green fluorescent protein. The simultaneous expression of the CSFV-E2 and PCV2-Cap protein was mediated by the 2A-like sequence derived from the Perina nuda virus (PnV), while the expression of the FVE-FIP was driven by the internal ribosome entry site (IRES) element derived from the Rhophalosipum padi virus (RhPV). The Western blot analysis result suggested that the CSFV-E2, PCV2-Cap, and FVE-FIP protein were successfully co-expressed by the infected Spodoptera frugiperda IPBL-Sf21 (Sf21) cell line. The extracted cell lysate containing all three recombinant proteins was administered to Balb/C mice with or without the supplementation of Freund’s adjuvant. The ELISA analysis of the serum collected from all the immunized groups showed detectable antibodies against CSFV-E2 and PCV2-Cap. Furthermore, the immunized group without the adjuvant supplementation demonstrated a similar level of antibodies to the group with adjuvant supplementation, suggesting the efficiency of the FVE-FIP in enhancing the immune response. These results demonstrated the polycistronic baculovirus vector could be employed to develop bivalent vaccines for pigs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call