Abstract

Biosurfactants are surface-active agents produced by microorganisms whose use in soil remediation processes is increasingly discussed as a more environmentally friendly alternative than chemically produced surfactants. In this work, we report the production of a biosurfactant by a bacterial community extracted from a polluted soil, mainly impacted by PAHs, in order to use it in a soil-washing process coupled with bioremediation. Nutrient balance was a critical parameter to optimize the production. Best conditions for biosurfactant production were found to be 20 g/L of glucose, 2 g/L of NH4NO3, and 14.2 g/L of Na2HPO4, corresponding to a C/N/P molar ratio equal to 13/1/2. Purification of the produced biosurfactant by acidification and double extraction with dichloromethane as a solvent allowed measuring the Critical Micellar Concentration (CMC) as equal to 42 mg/L. The capacity of the purified biosurfactant to increase the apparent solubility of four reference PAHs (naphthalene, phenanthrene, pyrene and benzo[a]pyrene) was completed. The solubilisation ratios, in mg of PAH/g of biosurfactant for phenanthrene, pyrene and benzo[a]pyrene are 0.214, 0.1204 and 0.0068, respectively. Identification of the bacteria found in the colony producing the biosurfactant showed the presence of bacteria able to produce biosurfactant (Enterobacteriaceae, Pseudomonas), as well as, others able to degrade PAHs (Microbacterium, Pseudomonas, Rhodanobacteraceae).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call