Abstract

When it comes to the combustion of biomass, per ton of solid biofuel will generate 70 kg ash on average. Additionally, these ashes have a high specific surface area, especially fly ash, which may adsorb harmful substances and damage to human health. This work was aimed to reutilize biomass power plant fly ash to produce silica material, to reduce the hazard of ash landfill for environment. The ash underwent acid leaching with 1.5 M HCl after proper heating pre-treatment. Then, 2 M NaOH was direct to react with residue to obtain sodium silicate. Finally, acid titration of solution was used to precipitate silica. The results showed that the amorphous silica has been produced from fly ash successfully with the purity from 44.41% to 93.63% and yield of 20.45%, and the optimal calcination conditions for amorphous transformation of silica in fly ash were temperature of 611 °C with time of 5 h and the minimum crystallinity was 17.41%, modeled with response surface methodology. Spectroscopy analysis revealed that the three-dimensional network silica was hydroxylated to form the linear structure. Thermal analysis indicated that the decomposition of silanol groups tend to be stable at 400 °C, but the ash was decomposing up to 1000 °C. Morphological analysis demonstrated that BET surface area ranged from 24 m2/g to 115 m2/g, agglomerate particle size from 380.9 nm to 178.8 nm, when the ash was conversion to spherical silica. Consequently, it is possible to turn blend biomass fly ash into amorphous silica nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.