Abstract

To improve root growth and production of bioactive compounds such as anthraquinones (AQ), phenolics, and flavonoids by adventitious root cultures of Morinda citrifolia, the effects of aeration rate, inoculum density, and Murashige and Skoog (MS) medium salt strengths were investigated using a balloon-type bubble bioreactor. The possible mechanisms underlying changes in activities of enzymic (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase) and nonenzymic (vitamin E) antioxidants, phenylalanine ammonia lyase, and stress levels (accumulation of hydrogen peroxide and proline, peroxidation of lipids) were also studied. Low aeration rate (0.05 vvm [air volume/culture volume/min]) accelerated accumulation of root fresh weight and dry weight (DW). High aeration rates (0.1 to 0.3 vvm) stimulated accumulation of AQ, phenolics, and flavonoids and reduced root growth. Low inoculum densities (5 and 10 g l–1) increased accumulation of those metabolites but inhibited root growth. Culture of adventitious roots with high concentrations of MS salts (1× and 1.5× MS) resulted in induction of oxidative stress that strongly inhibited root growth. Overall, an aeration rate of 0.05 vvm, 15 g l–1 inoculum density, and half-strength (0.5×) MS medium were optimal for enhancing accumulation of root dry biomass (4.38 g l–1), AQ (103.08 mg g–1 DW), phenolics (54.81 mg g–1 DW), and flavonoids (49.27 mg g–1 DW).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call