Abstract

The aim was to study the effect of steam-flaking of sorghum and maize on bioethanol production and the performance of their ground meals during liquefaction, saccharification and yeast fermentation. A bifactorial experiment with a level of confidence of P < 0.05 was designed to study differences between sorghum and maize and the effectiveness of steam-flaking. Grains were steam-flaked to increase starch bioavailability and disrupt the protein matrix that envelopes starch granules. The steam-flaked sorghum had significantly higher and faster starch hydrolysis compared to the regular kernel during liquefaction. This hydrolysate contained about 33% more reducing sugars compared to the untreated counterpart and similar amounts compared to both maize treatments. At the end of saccharification, the sorghum spent grains contained more residual starch compared to the maize counterparts. Steam-flaking significantly reduced residual starch especially in steam-flaked sorghum. The final glucose concentration in steam-flaked sorghum was similar to the concentration obtained in both maize mashes and 26.5% higher compared to the untreated sorghum. The yield of ethanol in steam-flaked sorghum was 44.2% higher compared to the untreated counterpart and similar to both maize treatments. Therefore, steam-flaking is a treatment useful to increase ethanol production especially in sorghum due to the higher starch bioavailability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call