Abstract

Biodiesel was prepared by methyl esterification and effects of different reaction conditions on the yield of fatty acid methyl esters (FAMEs) were investigated. The result of the orthogonal experiment analysis shows that the order of influential factors is ranked as reaction temperature > methanol-to-soybean-oil (M/O) ratio > reaction time. The maximum yield of 94.8 % has been achieved by reacting supercritical methanol and soybean oil in M/O ratio 4:2 (v/v) at 573 K for 45 min. Moreover, the higher M/O ratio, the higher yield of FAMEs will be obtained. At the temperature ranging from 533 k to 573 k, the yield rises significantly; however, since soybean oil decomposes over 573 K, the yield decreases oppositely. Time longer than 45 min has less effect on the final yield. In addition, the phase equilibrium data of supercritical methanol + C12 methyl esters and supercritical methanol + C18 methyl esters were separately correlated using the Peng-Robinson (PR) equation of state (EOS) with the Adachi-Sugie (AS) mixing rule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call