Abstract

Calcium methoxide obtained from quick lime is used as a solid catalyst in the transesterification reaction between palm stearin with methanol using tetrahydrofuran (THF) as co-solvent for biodiesel production. In this work, quick lime was used to prepare calcium oxide by heat treatment at the different temperatures, after that calcium oxide was further reacted with methanol to produce calcium methoxide catalyst. The properties of Calcium methoxide (Ca(OCH3)2) was characterized by XRD, SEM, BET, TGA, EDX and FTIR. The optimum conditions of biodiesel production were studied through response surface methodology and central composite design. The conversion of fatty acid methyl ester (FAME) was determined by proton nuclear magnetic resonance spectroscopy (1H-NMR). The results depicted that calcined quick lime at 800 °C for 3 h contained high calcium oxide content. The Ca(OCH3)2 catalyst prepared at 65 °C for 3 h gave high surface area and catalytic activity. The optimum conditions for biodiesel production were 2.33% w/w of catalyst, 1 : 9.39 of palm stearin to methanol molar ratio, 102 min of reaction time and 9.07% v/v based on methanol of THF co-solvent, the same condition gave 98.23% of FAME conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call