Abstract

ABSTRACTTomato seed contains proteins of high nutritional value and nutraceutical properties, which can be recovered for application as food additives. In this study, we investigated the use of a Lactobacillus plantarum strain to obtain high-added-value peptides from the fermentation process using tomato seed meal extract as the substrate. Potentially tomato seed meal extract have antioxidant activity which is correlated to the amino acid structures, compositions and sequences. After 24 h of fermentation, the radical scavenging activity of the isolated extract was increased by 87%. The increase of antioxidant activity is potentially attributed to the production of different bioactive peptides bio transformed during fermentation. L. plantarum growth on tomato seed meal extract as substrate reduced content of crude and soluble proteins by 18.44% and 68.99%, respectively, after 24 h of fermentation. Gel filtration chromatography showed a depolymerization of high molecular weight of polymers. HPLC analysis showed a significant decrease in the concentration of total amino acids, especially glutamic acid and aspartic acid. FTIR results showed that the fermentation favors the production of new amides and aromatic compounds. The production of protease by L. plantarum was investigated and results showed that highest activity (401.45 U/ml) were obtained after 20 h of fermentation. Results confirmed that L. plantarum could degrade and convert tomato seed proteins into bioactive peptides that contributed positively to the improvement of antioxidant activity of the protein isolate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call