Abstract

The amino acid L-theanine (γ-glutamylethylamide) has potential important applications in the food and pharmaceutical industries and increased demand for this compound is expected. It is the major "umami" (good taste) component of tea and its favorable physiological effects on mammals have been reported. An enzymatic method for the synthesis of L-theanine involving recombinant Escherichia coli γ-glutamyltranspeptidase (GGT) has been developed. We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of recombinant Escherichia coli γ-GGT. In order to obtain γ-GGT with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9 (consisting of glycerol and inorganic salts) and 0.1% (w/v) lactose were selected as culture medium and inducer, respectively. The fusion protein was expressed in soluble form in E. coli, and expression was verified by SDS-PAGE and western blot analysis. The fusion protein was purified to 90% purity by nickel-nitrilotriacetic acid (Ni-NTA) resin chromatography with a yield of 115 mg per liter fermentation culture. After the SUMO/γ-GGT fusion protein was cleaved by the SUMO protease, the cleaved sample was reapplied to a Ni-NTA column. Finally, about 62 mg recombinant γ-GGT was obtained from 1 l fermentation culture with no less than 95% purity. The recombinant γ-GGT showed great transpeptidase activity, with 1500 U of purified recombinant γ-GGT in a 1-l reaction system, a biosynthesis yield of 41 g of L-theanine was detected by paper chromatography or high pressure liquid chromatography (HPLC). Thus, the application of SUMO technology to the expression and purification of γ-GGT potentially could be employed for the industrial production of L-theanine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.