Abstract

The bio-oil derived from pyrolysis of straw can be selectively converted into high-purity hydrogen by coupling three steps: (i) steam reforming(SR) of different bio-oils, (ii) water-gas shift(WGS), and (iii) the removal of CO2. The catalytic SR reaction over the NiLaTiAl catalyst, coupled with a low-temperature WGS reaction with the CuZnAl catalyst, promoted the conversion of various oxygen-containing organic compounds in the bio-oil into hydrogen and carbon dioxide. Under the optimized condition, light bio-oil achieved the highest conversion(99.8%, molar fraction), with a high hydrogen yield of 16.4%(mass fraction) and a H2 purity of 99.94%(volume fraction). The carbon deposition on the NiLaTiAl catalyst was the main factor caused catalyst deactivation. Production of hydrogen from different bio-oil model compounds was also investigated in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call