Abstract

Barium titanate (BaTiO3 or BT) has become one of the most studied functional materials due to its potential application as multilayer ceramic capacitors, PTC thermistors, electromechanical devices, piezoelectric transducers, actuators, dynamic RAM or logic circuitry as well as a great variety of electro-optical devices. In the present study, high energy ball milling has been used to produce nanocrystalline powders of BT. Two categories of powders having average particle size of 35 nm and 25 nm were prepared by setting the milling speed at 250 rpm and 300 rpm respectively, fixing the milling time at 30 hours. Four ceramic samples, BT35-1350, BT25-1350, BT35-1400 and BT25-1400, were formed by sintering the two types of powders at 1350oC and 1400oC for 3 hours. The ferroelectric and piezoelectric properties of the ceramic samples were studied and found to be dependent on the size of the starting nanopowders. The bulk density and piezoelectric constant (d33) of B25-1350 were found to be less than those of BT35-1350, while the reverse was true in case of BT25-1400 and BT35-1400. Well saturated P-E hysteresis loops were observed for all the ceramics with the size and shape of the loops appearing different for the four samples. For both the pairs of ceramics sintered at 1350oC and 1400oC, the remnant polarization (Pr) decreases with starting particle size, that is, as we go from BT35-1350 to BT25-1350 as well as from BT35-1400 to BT25-1400. However, with decreasing particle size of the starting powders, the coercive field (Ec) increases for the ceramics sintered at 1350oC and decreases for the ceramics sintered at 1400oC. The study reveals the importance of an optimized combination of the size of the starting nanopowders and sintering temperature for obtaining BT ceramics with the desired properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call