Abstract

This study investigated hydrothermal humification of corn straw acid hydrolysis residue with biogas slurry impregnation, aiming at producing water-soluble artificial humic acid fertilizer for fertilizer application and soil remediation. Hydrothermal humification parameters, including potassium hydroxide concentration (1–3 mol/L), retention time (2–6 h), and temperature (140–180 °C), were investigated using water as the liquid phase. The selected hydrothermal humification condition was 1.5 mol/L potassium hydroxide at 180 °C for 4 h. Moreover, biogas slurry impregnation (0–30 days) was evaluated to improve humic acid yield without introducing additional chemicals or energy input. Biogas slurry as the liquid phase increased the humic acid production by 73.24% with 5 days of impregnation compared to the control due to the alkalinity. The humic acid concentration was sufficient for China's national standard of water-soluble humic acid fertilizers in such conditions. The organic components in biogas slurry were involved in artificial humification as a precursor, forming C–N bonds with humic acid. The product with fortified nitrogen-containing functional groups enhanced the nutrient slow-release characteristics and water retention capabilities. The pot experiment further confirmed that artificial humic acid prepared in this study not only promoted the growth of plants but also achieved soil remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call