Abstract

Arabitol is a low-calorie sugar alcohol with anti-cariogenic properties. Enzymatic hydrolysate of soybean flour is a new renewable biorefinery feedstock containing hexose, pentose, and organic nitrogen sources. Arabitol production by Debaryomyces hansenii using soybean flour hydrolysate was investigated. Effects of medium composition, operating conditions, and culture stage (growing or stationary phase) were studied. Production was also compared at different culture volumes to understand the effect of dissolved oxygen concentration (DO). Main factors examined for medium composition effects were the carbon to nitrogen concentration ratio (C/N), inorganic (ammonium) to organic nitrogen ratio (I/O-N), and sugar composition. Arabitol yield increased with increasing C/N ratio and a high I/O-N (0.8-1.0), suggesting higher yield at stationary phase of low pH (3.5-4.5). Catabolite repression was observed, with the following order of consumption: glucose > fructose > galactose > xylose > arabinose. Arabitol production also favored hexoses and, among hexoses, glucose. DO condition was of critical importance to arabitol production and cell metabolism. The yeast consumed pentoses (xylose and arabinose) only at more favorable DO conditions. Finally, arabitol was produced in fermentors using mixed hydrolysates of soy flour and hulls. The process gave an arabitol yield of 54%, volumetric productivity of 0.90g/L-h, and specific productivity of 0.031g/g-h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.