Abstract

ScFv-h3D6 has been shown as an efficient therapy in the 3xTg-AD mouse model of Alzheimer’s Disease. Because one of the major bottlenecks for the therapeutic uses of proteins produced in Escherichia coli is their potential contamination with endotoxins, LPS were extensively removed by a rather low-efficient, expensive, and time-consuming purification step. In addition, disulfide scrambling is favored in the reducing bacterial cytoplasm albeit the use of reductase deficient strains. To overcome these hurdles, as well as to improve the yield, the yeast Pichia pastoris, an endotoxin-free host system for recombinant protein production, has been used to produce scFv-h3D6, both in flask and in a fed-batch bioreactor. Comparison of the thermal stability of the obtained protein with that from E. coli showed no differences. Opposite to the case of the protein obtained from E. coli, no disulfide scrambled conformations or LPS traces were detected in that produced in P. pastoris. Cytotoxicity assays in SH-SY5Y neuroblastoma cell-cultures demonstrated that proteins from both expression systems were similarly efficient in precluding Aβ-induced toxicity. Finally, the 3xTg-AD mouse model was used to test the therapeutic effect of both proteins. Quantification of Aβ levels from cortex and hippocampus protein extracts by ELISA, and Aβ-immunohistochemistry, showed that both proteins reduced Aβ burden. This work demonstrates that scFv-h3D6 obtained from P. pastoris shows the same benefits as those already known for that obtained from E. coli, with multiple advantages in terms of recombinant production and safety.

Highlights

  • Immunotherapy has recently emerged as a promising approach to treat numerous diseases including cancer, autoimmune disorders, transplant rejection and cardiovascular diseases [1]

  • The vector used for the expression of scFv-h3D6 in P. pastoris was pPicZαA, which has a native Saccharomyces cerevisiae α-factor secretion signal (α-MF) that allows for efficient secretion of most proteins from P. pastoris

  • Kex2 cleavage occurs between arginine and glutamic acid residues within the sequence Glu-Lys-ArgÃ-Glu-Ala-GluAla, where à is the site of cleavage [35, 36]

Read more

Summary

Introduction

Immunotherapy has recently emerged as a promising approach to treat numerous diseases including cancer, autoimmune disorders, transplant rejection and cardiovascular diseases [1]. The accumulation of the Amyloid-β (Aβ) peptide is the seed that initiates the disease process in Alzheimer’s disease (AD) [2, 3]. The pathogenicity of the oligomeric forms of the Aβ peptide. P. pastoris production of an anti-Aβ antibody fragment

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.